FINAL PROJECT OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

Instructions: You may not cooperate with anyone on the project
Due Date: July 18, 2018.
Put the completed assignment in my mailbox, or mail to rudnick@post.tau.ac.il
Exercise 1. Let

$$
N_{3}(R)=\# \mathbb{Z}^{3} \cap B(0, R)
$$

be the number of lattice points in the 3-dimensional ball of radius R. Show that

$$
N_{3}(R)=\frac{4 \pi}{3} R^{3}+O\left(R^{3 / 2}\right)
$$

Exercise 2. Let $N \gg 1$. Show that for any triple $\left\{d_{1}, d_{2}, d_{3}\right\}$ of divisors of N, so that $\sqrt{N} \leq d_{1}<d_{2}<d_{3} \leq N$, we must have $d_{3}-d_{1} \geq N^{1 / 6}$. That is, the three integer points $\left(d_{j}, N / d_{j}\right)$ on the hyperbola $x y=N$ cannot lie in an arc of diameter $\ll N^{1 / 6}$.

Hint: One way to do this is to prove that

$$
\prod_{1 \leq i<j \leq 3}\left(d_{j}-d_{i}\right) \geq N^{1 / 2}
$$

Exercise 3. Here is an example showing why one needs the exponent to be bigger than 1 in the abc conjecture: Let $A_{k}=3^{2^{k}}-1, B_{k}=1, C_{k}=3^{2^{k}}$. Show that for all $k \geq 2$,

$$
C_{k} \geq \frac{2^{k+1}}{3} \operatorname{rad}\left(A_{k} B_{k} C_{k}\right)
$$

and hence that

$$
C_{k} \gg R_{k} \log R_{k}
$$

where $R_{k}:=\operatorname{rad}\left(A_{k} B_{k} C_{k}\right)$.
Hint: Show that 2^{k+2} divides $3^{2^{k}}-1$.
Exercise 4. Show that the abc conjecture implies Pillai's conjecture: each positive integer occurs at most finitely many times as a difference of perfect powers, i.e. for each $k \geq 1$, there are at most finitely many solutions of $x^{m}-y^{n}=k$ with $x, y, m, n \geq 2$.

Exercise 5. Prove the polynomial Catalan conjecture: There are no consecutive perfect powers of positive degree in $\mathbb{C}[x]$, i.e. no solutions of $f(x)^{m}-g(x)^{n}=1$ with $f, g \in \mathbb{C}[x], m, n \geq 2$ and $\operatorname{deg} f>0$.

